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Intersection of surface flux measurement interests

Many scientific communities have interest in surface fluxes:

Meteorologists Because they need the surface boundary conditions for weather and climate,

Hydrologists Because evapotranspiration is a missing link in Hydrology,

Ecologists Because NEE and GPP are key variables to understand ecosystems,

Agronomists Because evapotranspiration is essential for crop productivity,

Environmental Engineers Because of air pollution,

etc.
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Turbulence measurements in the ABL can bring important contributions to many fields
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My approach in this talk

This talk consists of:
A few examples (a recipe?) of successful e�orts to understand the Atmospheric Boundary-Layer (ABL)

• Good data sets.

• Correct and as thorough as possible application and interpretation of the governing equations

Examples drawn from contributions to the field (based on my personal experience).
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Di�erent approaches

• Theoretical The ABL is a “natural laboratory” for tur-
bulent flows because of the very high Reynolds num-
bers.

• Applied Boundary-Layer Meteorology has impor-
tant applications in may fields, as we have seen
(Weather prediction, Climate Simulation, Agronomy,
Ecology, Hydrology, Air Pollution, etc.). Above: The Chaitén Eruption in

Chile, (O Globo Newspaper, May 07
2008)
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An optimistic view of atmospheric turbulence, c. 1970

(Monin and Yaglom, 1971, v. 1, p. 22):
The fact is, that the atmosphere, which von Kármán himself (1934) called “a giant laboratory for ‘turbu-
lence research,’ ” possesses very valuable properties which make it especially suitable for the verification
of the deductions of modern statistical theory. We have already observed that atmospheric motion is
usually characterized by far larger Reynolds numbers than flows created in the laboratory, and therefore
is far more convenient for investigating specific laws relating to the case of very large Re. Moreover, the
geometrical conditions of atmospheric turbulence (namely, the conditions of a two-dimensional flow in
a half-space bounded by a rigid wall, . . . where in many cases the “wall” may be considered as plane and
homogeneous; . . . ) are simpler than in most laboratory experiments. The only additional complication, which
arises on transition from laboratory to atmosphere, is the necessity of taking into account the thermal
stratification. . .
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But

(And this is a list of but a few of the problems that remain)

• There are flows with lower Reynolds numbers under stable conditions (laminar?)

• Horizontal inhomogeneity (land cover changes), topographical e�ects.

• Vertical inhomogeneity (what is the e�ect of the transport terms in the 2nd-order equations?)

• Non-stationarity and the di�iculty of taking representative time averages.

• The increasing role of more and more scalars, such as CO2, CH4, N2O, O3, VOCs, etc., and the need
to “partition” CO2 into respiration and photosynthesis, and H2O into transpiration and evaporation,
etc..

Lemma
UFPR



Atmospheric Turbulence ��� 12/31

Fundamental progress (a li�le history)

This is a personal choice of favorites! Many works will be (unfairly) le� out

• Reynolds (1895) The first derivation of the TKE: the birth of the statistical approach to turbulence
(following Maxwell (1867), but much earlier than Einstein (1905)’s paper on Brownian motion.

• Richardson (1920) The birth of the Richardson number

• Kolmogorov (1941) The K41 Theory: Ee (k ) = αeε2/3e k −5/3, microscales

• Kolmogorov (1941 1991) The 4/5 law: [u (x1 + r1) − u (x1)]3 = −45εer1

• Obukhov (1946 1971) The Monin-Obukhov Similarity Theory (MOST)

• Obukhov (1949), Corrsin (1951) The scalar spectrum

• Batchelor (1959) The Batchelor microscale
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Kolmogorov’s theory and MOST together

Stewart and Townsend (1951), Grant et al. (1962), Gibson and Schwarz (1963), Wyngaard and Coté (1972);
Kaimal et al. (1972)

nCwa (n)/wa = A (Bf )/[1 + (Bf )7/3], B = B(ζ)
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But some questions are only partially answered to this day

Isotropy of structure functions in K41 and rate of dissipation of TKE (Chamecki and Dias, 2004): the 4/5
law.
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Further things to do

• (very di�icult) Make progress towards directly measuring

εe ≈ ν
∂u′

i

∂xk

∂u′
i

∂xk

• Understand deviations from the idealized 4/5 law conditions (Danaila et al., 2001):

−(∆u′1)3 + 6ν
d(∆u′1)2

dr
+
6

r 4

∫ r

0
y 4

−
∂u′3(∆u

′
1)2

∂x3

 dy =
4

5
εer

• Extend analysis to scalars
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A systematic approach

• Try to start at the governing equations

• Make clear physical approximations

• Make good experiments

• Support your analysis with statistics
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Example 1: the Brutsaert theory for the scalar roughness length

Problem: turbulence in the interfacial sublayer and how you parameterize the scalar flux Brutsaert (1965,
1975a,b).
Key: use Danckwerts (1951)’s surface renewal theory, but parameterize the renewal rate with the thickness
of the interfacial (roughness) sublayer h. Also, match the top of the interfacial sublayer to the bo�om of
the inertial sublayer, eliminating ch.

s ∝
(
u3∗/(νκ (h − d0)

)1/2
F = ρ (νcs)1/2 (c0 − ch)
z0c = z0 exp

[
−κ

(
7.3Re1/40 Sc1/2−5

)]
F = ρ

κ2[
ln za−d0

z0
− Ψm (ζa)

] [
ln za−d0

z0c
− ΨF (ζa)

]u a (c0 − ca)
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Example 2: similarity of scalars

• If two scalars a and b are perfectly similar in the ABL, then a′ = k b′.
• a′ may be much easier to measure then b′⇒ get eddy di�usivities from a , apply to b .
• Perfect similarity is o�en assumed in applications. Examle: Model to partition the H2O and CO2

fluxes between evaporation and transpiration, and between respiration and photosynthesis (Scanlon
and Sahu, 2008).

Dias and Brutsaert (1996):

−2w ′a′∂a
∂z
− ∂w

′a′a′

∂z
= 2εaa,

−2w ′b′∂b
∂z
− ∂w

′b′b′

∂z
= 2εbb,

−w ′a′∂b
∂z
−w ′b′∂a

∂z
− ∂w

′a′b′

∂z
= 2εab,

If the transport terms can be neglected, this leads
to

• Equality of the MOST dimensionless gradi-
ents for a and b ,

• Perfect correlation bewteen the fluctuations,
meaning a′ = k b′.

Lemma
UFPR



Le�ing the equations talk ��� 20/31

With zero transport

φH = φεθθ φE = φεqq φH + φE = 2φεθq

ε2θq

εθθεqq
=

(
νθ+νq
2

)2 (
∂θ′
∂xk

∂q ′

∂xk

)2
νθνq

(
∂θ′
∂xk

∂θ′
∂xk

) (
∂q ′

∂xk

∂q ′

∂xk

) = φ2εθq

φ2εθθφεqq
= 1.008r 2+θ+q ≈ r

2
+θ+q

x + y = z , z 2 = r 2x y ⇒ x

z
=
r 2 ±
√
r 4 − r 2
r 2

⇒ x = y = z ; r 2 = 1.

And
r 2+θ+q = 1 ⇒ r 2θq = 1.

Production and vertical transport need to be investigated further, but mean scalar gradients need good
calibration, and 3rd moments have large errors.
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Example 3: the alignment between mean wind u and Reynolds stress tensor τ

Problem (Bernardes and Dias, 2010): a�er rotation, u = (u, 0), τ = ρ (u′w ′,v ′w ′) and u ∦ τ .
So how do you calculate u∗:

u∗ = [u′w ′
2
+ v ′w ′

2]1/4 or u∗ = [−u′w ′]1/2?
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−ζ & 1: u′w ′ indistinguishable from 0 −ζ > 0 : v ′w ′ indistinguishable from 0
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−ζ & 1: u′w ′ indistinguishable from 0 −ζ > 0 : v ′w ′ indistinguishable from 0
But this is Wyngaard et al. (1971)’s prediction for local convection!
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Example 4: The reduced TKE budget

From Chamecki et al. (2018):

−u′w ′∂u
∂z︸     ︷︷     ︸

P

+
g

θ
w ′θ′︸︷︷︸
B

−εe =
∂ek
∂t

+ u
∂ek
∂x

+
1

ρ

∂u′
i
p′

∂xi
+
∂u′

i
e′
k

∂xi︸                                    ︷︷                                    ︸
R

,

P

εe
+
B

εe
− 1 = R

εe
P

εe
=
φm (ζ)
φεe (ζ)

,

B

εe
= − ζ

φεe
,

ζ = ζ (Rif ).
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Data from AHATS (above) and GoAmazon (below)
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A road to progress

• Understanding the “discarded” terms in MOST (time rate of change, advection, transport term, return
to isotroy – see Freire et al. (2019)) is essential.

• O�en much can be learned by starting from “ideal” conditions and “perturbing”.

• Be�er field measurements, and be�er models and theories, are always in need.
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• Understanding the “discarded” terms in MOST (time rate of change, advection, transport term, return
to isotroy – see Freire et al. (2019)) is essential.

• O�en much can be learned by starting from “ideal” conditions and “perturbing”.

• Be�er field measurements, and be�er models and theories, are always in need.

Wrapping up:

• Progress requires universality.

• Universality is encapsulated in the governing equations and sound theory.

• Let them lead us to new discoveries.

Thanks!
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