ntroduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
0	0000000	000	00000	00	0

The study of atmospheric turbulent transport combining high-frequency measurements and numerical simulation

Livia S. Freire

University of São Paulo, Brazil

November 5th, 2021

Introd	uction

Example 1 000 Field measurements

Example 2 00 Summary O

The atmospheric boundary layer

field and laboratory data

computational simulation

Introduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
0	0000000	000	00000	00	0

ntroduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
D	0000000	000	00000	00	0

• written from governing equations: (approx.) "exact" solutions

ntroduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
D	0000000	000	00000	00	0

- written from governing equations: (approx.) "exact" solutions
- pros: controlled conditions, "isolation" of specific effects

ntroduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
D	0000000	000	00000	00	0

- written from governing equations: (approx.) "exact" solutions
- pros: controlled conditions, "isolation" of specific effects
- cons: simplified conditions (e.g. homogeneous, flat surfaces)

Introduction	Computational simulation	Example 1	Field measurements	Example 2	Summar
0	000000	000	00000	00	0

Direct Numerical Simulation (DNS): high computational cost

- solve Navier-Stokes + scalar transport equations
- domain: $\sim 1\,{
 m km}$
- grid size: $\sim 1\,{
 m mm}$

troduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
	0000000	000	00000	00	0

- solve Navier-Stokes + scalar transport equations
- domain: $\sim 1\,{
 m km}$
- grid size: $\sim 1\,{\rm m}$

Introduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
0	00000000	000	00000	00	0

DNS versus LES

Introduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
0	00000000	000	00000	00	0

DNS versus LES

 $\frac{\partial U_i}{\partial t} + \frac{\partial U_i U_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 U_i}{\partial x_j \partial x_j}$

Introduction	Computational simulation	Example 1	Field measurements	Example 2	Summa
0	00000000	000	00000	00	0

DNS versus LES

troduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
	0000000	000	00000	00	0

Introduction	Computational simulation	Example 1	Field measurements	Example 2	Summa
0	0000000	000	00000	00	0

• solve filtered Navier-Stokes + scalar transport equations

Introduction	Computational simulation	Example 1	Field measurements	Example 2	Summar
0	0000000	000	00000	00	0

- solve filtered Navier-Stokes + scalar transport equations
- different τ_{ij}^R parameterizations: subgrid scale model

Introduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
0	0000000	000	00000	00	0

- solve filtered Navier-Stokes + scalar transport equations
- different τ_{ij}^R parameterizations: subgrid scale model
- different numerical method, mesh organization, boundary and initial conditions, etc

Introduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
0	0000000	000	00000	00	0

- solve filtered Navier-Stokes + scalar transport equations
- different τ_{ij}^R parameterizations: subgrid scale model
- different numerical method, mesh organization, boundary and initial conditions, etc
- research on development, testing and applications

Example of ABL study using LES

mean concentration of small settling particles as a function of particle size and atmospheric stability:

$$\begin{aligned} & \frac{\overline{u}}{u_*} = \frac{1}{\kappa} \left[\ln\left(\frac{z}{z_0}\right) + \psi(\zeta) \right] \\ & \frac{\overline{C}}{C_r} = 1 - \frac{\Phi}{\kappa u_* C_r} \left[\ln\left(\frac{z}{z_r}\right) + \psi_c\left(\zeta, \frac{z_r}{L}\right) \right] \end{aligned}$$

Freire et al. (2016) Boundary-Layer Meteorol

Example of ABL study using LES

mean concentration of small settling particles as a function of particle size and atmospheric stability:

$$\frac{\partial \overline{C}}{\partial t} - w_s \frac{\partial \overline{C}}{\partial z} = D \frac{\partial^2 \overline{C}}{\partial z \partial z} - \frac{\partial \overline{wc}}{\partial z}, \qquad \overline{wc} = -\frac{\kappa z u_*}{\phi_c(\zeta)} \frac{\partial \overline{C}}{\partial z}$$

 $\frac{\overline{C}(z)}{\overline{C}_r} = \left(\frac{\Phi}{\overline{C}_r w_s} + 1\right) \left(\frac{z}{z_r}\right)^{-\gamma} \exp(\gamma \psi_c(\zeta)) - \left(\frac{\Phi}{\overline{C}_r w_s}\right), \quad \gamma = \frac{w_s}{\kappa u_*}$

ntroduction	Computational simulation	Example 1	Field measurements	Example 2	Summar
)	0000000	000	00000	00	0

- approximate equations, simplified conditions
- validation with field measurements

Introduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
0	0000000	000	00000	00	0

(CHATS experiment https://www.eol.ucar.edu/field_projects/chats)

ntroduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
)	0000000	000	00000	00	0

(CHATS experiment https://www.eol.ucar.edu/field_projects/chats)

• high-frequency time series (point measurements, arrays)

ntroduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
)	0000000	000	00000	00	0

(CHATS experiment https://www.eol.ucar.edu/field_projects/chats)

- high-frequency time series (point measurements, arrays)
- pros: measurement of "the reality"

ntroduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
)	0000000	000	00000	00	0

(CHATS experiment https://www.eol.ucar.edu/field_projects/chats)

- high-frequency time series (point measurements, arrays)
- pros: measurement of "the reality"
- cons: uncontrolled, combination of many effects, sometimes difficult to interpret

ntroduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
)	0000000	000	00000	00	0

Field measurements of velocity: hot-wire

(CHATS experiment https://www.eol.ucar.edu/field_projects/chats)

https://tsi.com/

- time series: many days
- measurement frequency: \sim 2000 Hz
- difficult, sensitive, frequent calibration

ntroduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
)	0000000	000	00000	00	0

Field measurements of velocity: sonic anemometer

(CHATS experiment https://www.eol.ucar.edu/field_projects/chats)

https://tsi.com/

- time series: many days
- measurement frequency: \sim 20 Hz
- robust

Introduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
0	0000000	000	00000	00	0

Field measurements of velocity: sonic anemometer

Freire et al. (2019) Boundary-Layer Meteorol (ongoing research)

- data selection (stationarity, homogeneity, etc)
- statistical treatment
- errors of sensors
- research on sensor development, statistical analysis and applications

Introduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
0	0000000	000	00000	00	0

Field measurements of velocity: sonic anemometer

Freire et al. (2019) Boundary-Layer Meteorol (ongoing research)

- data selection (stationarity, homogeneity, etc)
- statistical treatment
- errors of sensors
- research on sensor development, statistical analysis and applications

simulations can help on data interpretation

Introduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
0	0000000	000	00000	•0	0

Example: effect of topography in the Amazon

Chamecki, Freire, Dias et al. (2020) J Atmos Sci

Reduced TKE budget:

 $P + B - \epsilon = R$

FIG. 9. Normalized local imbalance of TKE R/ε above the canopy from LES of the Amazon forest over idealized topography. The two thick black dashed lines indicate

Introduction	Computational simulation	Example 1	Field measurements	Example 2	Summar
0	0000000	000	00000	0●	0

Example: effect of topography in the Amazon

Chamecki, Freire, Dias et al. (2020) J Atmos Sci

Reduced TKE budget:

 $P + B - \epsilon = R$

FIG. 9. Normalized local imbalance of TKE R/ϵ above the canopy from LES of the Amazon forest over idealized topography. The two thick black dashed lines indicate

ntroduction	Computational simulation	Example 1	Field measurements	Example 2	Summary
0	0000000	000	00000	00	•

Numerical tools and field data complement each other

Numerical tools and field data complement each other

Research opportunities:

- numerical development
- testing
- applications

Numerical tools and field data complement each other

Research opportunities:

- numerical development
- testing
- applications

Research opportunities:

- sensor development
- error correction
- statistical approaches
- applications

Introduction 0	Computational simulation	Example 1 000	Field measurements	Example 2 00	Summary O

- Flux-Profile Relationship for Dust Concentration in the Stratified Atmospheric Surface Layer. Freire, L.S., Chamecki, M., Gillies, J.A. (2016) *Boundary-Layer Meteorology*, 160(2), pp. 249-267
- Effects of Path Averaging in a Sonic Anemometer on the Estimation of Turbulence-Kinetic-Energy Dissipation Rates. Freire, L.S., Dias, N.L., Chamecki, M. (2019) *Boundary-Layer Meteorology*, 173(1), pp. 99-113
- Effects of Vegetation and Topography on the Boundary Layer Structure above the Amazon Forest. Chamecki, M., Freire, L.S., Dias, N.L., Chen, B., Dias-Junior, C.Q., Machado, L.A.T., Sörgel, M., Tsokankunku, A., de Araújo, A.C. (2020) *Journal of the Atmospheric Sciences*, 77(8), pp. 2941-2957

liviafreire@usp.br

